Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 49(12): 12165-12179, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36169892

RESUMO

Microorganisms dwell in diverse plant niches as non-axenic biotic components that are beneficial as well pathogenic for the host. They improve nutrients-uptake, stress tolerance, phytohormone synthesis, and strengthening the defense system through phyllosphere, rhizosphere, and endosphere. The negative consequences of the microbial communities are largely in the form of diseases characterized by certain symptoms such as gall, cankers, rots etc. Uncultivable and unspecified nature of different phytomicrobiomes communities is a challenge in the management of plant disease, a leading cause for the loss of the plant products. Metagenomics has opened a new gateway for the exploration of microorganisms that are hitherto unknown, enables investigation of the functional aspect of microbial gene products through metatranscriptomics and metabolomics. Metagenomics offers advantages of characterizing previously unknown microorganisms from extreme environments like hot springs, glaciers, deep seas, animal gut etc. besides bioprospecting gene products such as Taq polymerase, bor encoded indolotryptoline, hydrolases, and polyketides. This review provides a detailed account of the phytomicrobiome networks and highlights the importance and limitations of metagenomics and other meta-omics approaches for the understanding of plant microbial diversity with special focus on the disease control and its management.


Assuntos
Metagenômica , Microbiota , Metagenômica/métodos , Microbiota/genética , Rizosfera , Metabolômica/métodos , Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA